Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4381, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474586

RESUMO

In post-reproductive C. elegans, destructive somatic biomass repurposing supports production of yolk which, it was recently shown, is vented and can serve as a foodstuff for larval progeny. This is reminiscent of the suicidal reproductive effort (reproductive death) typical of semelparous organisms such as Pacific salmon. To explore the possibility that C. elegans exhibits reproductive death, we have compared sibling species pairs of the genera Caenorhabditis and Pristionchus with hermaphrodites and females. We report that yolk venting and constitutive, early pathology involving major anatomical changes occur only in hermaphrodites, which are also shorter lived. Moreover, only in hermaphrodites does germline removal suppress senescent pathology and markedly increase lifespan. This is consistent with the hypothesis that C. elegans exhibit reproductive death that is suppressed by germline ablation. If correct, this would imply a major difference in the ageing process between C. elegans and most higher organisms, and potentially explain the exceptional plasticity in C. elegans ageing.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Humanos , Animais , Feminino , Envelhecimento , Longevidade , Reprodução
2.
Geroscience ; 45(3): 1583-1603, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37140725

RESUMO

Liposome-mediated delivery is a possible means to overcome several shortcomings with C. elegans as a model for identifying and testing drugs that retard aging. These include confounding interactions between drugs and the nematodes' bacterial food source and failure of drugs to be taken up into nematode tissues. To explore this, we have tested liposome-mediated delivery of a range of fluorescent dyes and drugs in C. elegans. Liposome encapsulation led to enhanced effects on lifespan, requiring smaller quantities of compounds, and enhanced uptake of several dyes into the gut lumen. However, one dye (Texas red) did not cross into nematode tissues, showing that liposomes cannot ensure the uptake of all compounds. Of six compounds previously reported to extend lifespan (vitamin C, N-acetylcysteine, glutathione (GSH), trimethadione, thioflavin T (ThT), and rapamycin), this effect was reproduced for the latter four in a condition-dependent manner. For GSH and ThT, antibiotics abrogated life extension, implying a bacterially mediated effect. With GSH, this was attributable to reduced early death from pharyngeal infection and associated with alterations of mitochondrial morphology in a manner suggesting a possible innate immune training effect. By contrast, ThT itself exhibited antibiotic effects. For rapamycin, significant increases in lifespan were only seen when bacterial proliferation was prevented. These results document the utility and limitations of liposome-mediated drug delivery for C. elegans. They also illustrate how nematode-bacteria interactions can determine the effects of compounds on C. elegans lifespan in a variety of ways.


Assuntos
Caenorhabditis elegans , Lipossomos , Animais , Lipossomos/farmacologia , Envelhecimento , Longevidade , Bactérias , Sirolimo/farmacologia
3.
Geroscience ; 44(5): 2461-2469, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36068483

RESUMO

One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).


Assuntos
Envelhecimento , Senescência Celular , Animais , Camundongos , Senescência Celular/fisiologia , Envelhecimento/fisiologia , Inflamação/metabolismo , Longevidade
4.
Front Genet ; 13: 880343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35754809

RESUMO

The aging process in semelparous and iteroparous species is different, but how different? Death in semelparous organisms (e.g., Pacific salmon) results from suicidal reproductive effort (reproductive death). Aging (senescence) in iteroparous organisms such as humans is often viewed as a quite different process. Recent findings suggest that the nematode Caenorhabditis elegans, widely used to study aging, undergoes reproductive death. In post-reproductive C. elegans hermaphrodites, intestinal biomass is repurposed to produce yolk which when vented serves as a milk to support larval growth. This apparent benefit of lactation comes at the cost of intestinal atrophy in the mother. Germline removal and inhibition of insulin/IGF-1 signaling (IIS) suppress C. elegans reproductive pathology and greatly increase lifespan. Blocking sexual maturity, e.g., by gonadectomy, suppresses reproductive death thereby strongly increasing lifespan in semelparous organisms, but typically has little effect on lifespan in iteroparous ones. Similarly, reduced IIS causes relatively modest increases in lifespan in iteroparous organisms. We argue that the more regulated and plastic mechanisms of senescence in semelparous organisms, involving costly resource reallocation under endocrine control, exist as one extreme of an etiological continuum with mechanisms operative in iteroparous organisms. We suggest that reproductive death evolved by exaggeration of mechanisms operative in iteroparous species, where other mechanisms also promote senescence. Thus, knowledge of C. elegans senescence can guide understanding of mechanisms contributing to human aging.

5.
Nat Commun ; 12(1): 5801, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611154

RESUMO

The nematode Caenorhabditis elegans exhibits rapid senescence that is promoted by the insulin/IGF-1 signalling (IIS) pathway via regulated processes that are poorly understood. IIS also promotes production of yolk for egg provisioning, which in post-reproductive animals continues in an apparently futile fashion, supported by destructive repurposing of intestinal biomass that contributes to senescence. Here we show that post-reproductive mothers vent yolk which can be consumed by larvae and promotes their growth. This implies that later yolk production is not futile; instead vented yolk functions similarly to milk. Moreover, yolk venting is promoted by IIS. These findings suggest that a self-destructive, lactation-like process effects resource transfer from postreproductive C. elegans mothers to offspring, in a fashion reminiscent of semelparous organisms that reproduce in a single, suicidal burst. That this process is promoted by IIS provides insights into how and why IIS shortens lifespan in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Animais , Biomassa , Feminino , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
6.
Front Cell Dev Biol ; 9: 688788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34513830

RESUMO

In some species of salmon, reproductive maturity triggers the development of massive pathology resulting from reproductive effort, leading to rapid post-reproductive death. Such reproductive death, which occurs in many semelparous organisms (with a single bout of reproduction), can be prevented by blocking reproductive maturation, and this can increase lifespan dramatically. Reproductive death is often viewed as distinct from senescence in iteroparous organisms (with multiple bouts of reproduction) such as humans. Here we review the evidence that reproductive death occurs in C. elegans and discuss what this means for its use as a model organism to study aging. Inhibiting insulin/IGF-1 signaling and germline removal suppresses reproductive death and greatly extends lifespan in C. elegans, but can also extend lifespan to a small extent in iteroparous organisms. We argue that mechanisms of senescence operative in reproductive death exist in a less catastrophic form in iteroparous organisms, particularly those that involve costly resource reallocation, and exhibit endocrine-regulated plasticity. Thus, mechanisms of senescence in semelparous organisms (including plants) and iteroparous ones form an etiological continuum. Therefore understanding mechanisms of reproductive death in C. elegans can teach us about some mechanisms of senescence that are operative in iteroparous organisms.

7.
Front Immunol ; 11: 1715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849605

RESUMO

Monocytes can develop immunological memory, a functional characteristic widely recognized as innate immune training, to distinguish it from memory in adaptive immune cells. Upon a secondary immune challenge, either homologous or heterologous, trained monocytes/macrophages exhibit a more robust production of pro-inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, than untrained monocytes. Candida albicans, ß-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling analyses have revealed that training induction is dependent on glycolysis, glutaminolysis, and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly, fumarate itself can induce training. Since fumarate is produced by the tricarboxylic acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate has an effect on mitochondrial function. Results showed that the addition of fumarate to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane potential (Δψm), while mitochondrial cristae became closer to each other, suggesting that immediate (from minutes to hours) mitochondrial activation plays a role in the induction phase of innate immune training of monocytes. To establish whether fumarate induces similar mitochondrial changes in vivo in a multicellular organism, effects of fumarate supplementation were tested in the nematode worm Caenorhabditis elegans. This induced mitochondrial fusion in both muscle and intestinal cells and also increased resistance to infection of the pharynx with E. coli. Together, these findings contribute to defining a mitochondrial signature associated with the induction of innate immune training by fumarate treatment, and to the understanding of whole organism infection resistance.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Infecções por Escherichia coli/prevenção & controle , Escherichia coli/patogenicidade , Fumaratos/farmacologia , Imunidade Inata/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Animais , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Escherichia coli/imunologia , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Monócitos/imunologia , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...